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Abstract-The heat transfer model for the double conductivity medium is investigated. The medium is 
composed oftwo homogeneous materials which differ considerably in their conductivity characteristics. The 
aim of this paper is to compare the descriptions obtained by a phenomenological and a homogenization 
approach. The first one, which introduces two temperature lields, is shown to be inefficient for a large 
range of the phenomena. The latter gives the rigorous description. The study enables us to improve the 
phenomenological description. It provides an approximation which is valid for the quasi-static conditions. 

1. INTRODUCTION 

WE CONSIDER a two-constituent medium characterized 
by the conductivities which differ considerably, and 
we investigate transient heat transfers. For the sake 
of simplicity the two constituents will be assumed to 
be homogeneous. The modelling of such a medium at 
the scale of the heterogeneities is totally inefficient 
because of the high number of heterogeneities in 
macroscopic samples, that renders the calculations 
intractable. A classical idea is to replace the medium 
by a continuous one which is equivalent from the 
macroscopic point of view. We focus here on two 
different approaches. 

On the one hand, the modelling of such media with 
double-conductivity has been investigated directly at 
the macroscopic scale, by using a phenomenological 
approach [l-3]. Two temperature fields are assumed, 
i.e. one for each constituent. Similar approaches have 
also been carried out for other diffusive processes, 
such as diffusion [4, 51, or flow through double- 
porosity porous media [6-IO]. 

On the other hand, an effective macroscopic 
description for transient heat transfer in periodic com- 
posites with double-conductivity was obtained [I I] by 
an homogenization technique using asymptotic devel- 
opments. The method is based on the passage from the 
microscopic description-the heterogeneity scale-to 
the macroscopic one by using the small parameter E, 
which is the ratio between the two scale characteristic 
lengths. The method gives the exact macroscopic 
description, within an approximation O(E). 

Although the homogenization leads to the right 
answer, the modelling which is obtained appears to 
be a little more complex than the phenomenological 
one. And the latter is often considered as a good 
approximation for weakly transient processes. It is 
therefore of interest to investigate the links between 

them. The problem was already partially addressed in 
ref. [12] where the two descriptions were shown to 
lead to similar boundary value problems from the 
mathematical point of view. 

At first, in Section 2, we present the phenom- 
enological approach for the modelling of heat trans- 
fers in media with double conductivity. 

In Section 3 the results are recalled obtained in ref. 
[1 1] with an homogenization technique. The reason- 
ing follows a more recent formalism [ 131. 

Then, Section 4 is devoted to the comparison 
between the two descriptions. It is shown that they 
are equivalent only in a particular case, for a given 
pulsation of the excitation. The phenomenological 
approach is shown to be inefficient for a large range 
of the phenomena. 

Finally, based on the application of the homo- 
genization approach, the phenomenological point of 
view is improved in Section 5 and a correct approxi- 
mation for the quasi-static behaviour is provided. 

2. PHENOMENOLOGICAL APPROACH 

When considering double-conductivity media, the 
phenomenological reasoning is characterized by the 
introduction of two temperature fields, i.e. one tem- 
perature for each constituent [l]. These temperatures 
are defined at a macroscopic scale, directly, and the 
description is assumed to be continuous. 

Because of the two different temperatures, a heat 
flux between the two constituents appears. Using this 
point of view, Rubinshtein [l] and Aifantis and 
Beskos [3] introduce an interconstituent heat transfer 
to be proportional to the temperature difference 
between the constituents. The composite material is 
made of two homogeneous constituents, one of them, 
denoted 1, being much more conductive than the 
other, denoted 2. The two constituents are occupying, 
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NOMENCLATURE 

ii 
specific mass capacity of the medium i Greek symbols 
coefficient characterizing the a transfer coefficient for the 
homogenization approach phenomenological approach 

(k) effective value of k 7’ dimensionless pulsation 
(k)ph coefficient (k) obtained by comparison I- boundary between the two media 

with the phenomenological approach for the homogenization 
R memory function approach 
j?ph memory function obtained by 4, Kronecker delta 

comparison with the E small parameter 
phenomenological approach i, dimensionless number defined in the 

I characteristic microscopic length medium i 
L characteristic macroscopic length 1.8 conductivity of the medium i for the 
I7 partial volume of the constituent homogenization approach 
ti unit normal to F 4 macroscopic thermic conductivity of 
(7, heat flux for the medium i medium i for the phenomenological 
Q, quantity of heat in R, approach 
1 time 4lT effective conductivity for the 
[t temperature field of the medium i homogenization approach 
T, amplitude of the harmonic perturbation PC density of the medium i 

of I, X, particular solution for T 
.r low space variable ‘y, term of heat transfer between the two 
.ii fast space variable constituents of the composite for the 
(PC> effective value of pc for the phenomenological approach 

homogenization approach 
Pi 

pulsation 
(PC)n, average of pc in the medium i for spatial period 

the phenomenological approach. Q volume occupied by medium i. 

respectively, the volumes R, and fiz. Two temperature 
fields, f  , and I?, are defined in each point as the average 
of the temperatures in the corresponding constituent, 
respectively. Corresponding are two heat fluxes i, 
and y1 per unit surface which are again defined at each 
point. At each point the quantity Q, is also defined as 
the quantity of heat in a volume a, of the medium i. 
i= l,2. 

The heat equation in the medium i is then written 

where Ii denotes the macroscopic thermal con- 
ductivity of the medium i, t is time and tii an internal 
production term, the interconstituent heat transfer. It 
is often supposed that this latter can be considered in 
a linearized form. Therefore, Y, (which is defined as 
the heat transfer from medium 2 to medium I) can be 
put in the form 

Y, = a(t, -fJ 

where c( is a negative constant and denotes the transfer 
coefficient expressed in W mm3 K- ‘. Consequently, 
YZ characterizes the heat transfer from medium I to 
medium 2 and is written 

Y’, = -Y, = -a(t,-t,). 

In medium 2, the macroscopic thermic conductivity 

lz is supposed negligible with respect to i,. Then, 
the phenomenological approach for the conduction 
phenomenon in a composite composed of two 
materials very different in their conductivities, leads 
to the two following coupled equations 

for media 1 and 2, respectively; p, and ci denote the 
density and the specific mass capacity of the con- 
stituent i. (pc)d, represents the average of pc in the 
medium i. Let us define the partial volume of con- 
stituent 2 by 

v&l 
n=jn( 

where 

R = n, +nz. 

We have 

<PCh, = (1 --n)p,c, 

(PC)nz = vzc2. 

Proceeding by Fourier’s analvsis, we study the sys- 
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tern response to a harmonic perturbation of the pul- 
sation 0~ 

f  , = T, et”” 

where T, and T2 are the complex numbers. 
Then, eliminating T2 between (I) and (2) leads to 

fi(&vT,) = 

--ato'r~'(p~c~-)'+ia'o((l-n)p,~,+npzc,) 

+iw'n?(l-)7)p,~,(P2C2)2 

a~+w2fl~(p2cz)2 
i-1. 

(3) 

Equation (3) represents the phenomenological 
description of the transient heat transfer process at 
the constant pulsation. Thus, the phenomenological 
description of the problem is governed by the tem- 
perature of the more conductive constituent. Note 
that the conductivity of the second constituent has 
been neglected and that it seems to be difhcult to give 
a physical interpretation of the temperature field T2. 

3. APPLICATION OF THE HGMOGENIZATION 
METHOD 

Unlike the phenomenological approach, the homo- 
genization method is based on the passage from the 
microscopic description to the macroscopic one. The 
main idea of this method is to define, if possible, a 
fictitious homogeneous medium, that will be hereafter 
referred to as the homogeneous medium or the equi- 
valent macroscopic medium. It will behave as the com- 
posite medium when submitted to the same external 
constraints. The description of this medium must be 
intrinsic to the material and the phenomenon con- 
sidered. In particular, it should not depend on the 
macroscopic boundary conditions. 

An effective macroscopic description for transient 
heat conduction in periodic composites has been 
already derived by Auriault [I I]. In this paper we 
follow the homogenization process which was pre- 
sented in ref. [l3]. Consider a two-constituent com- 
posite medium, with heterogeneity sizes O(I) and a 
large volume of this material of a dimension L. 
Assume a good separation of scales 

I 
E = - << I. 

L 

The composite is periodic with a period R = O(I). The 
period is composed of two parts R, and Q2. occupied 
by the constituents 1 and 2, respectively (Fig. I). 

At the initial time, the medium is in thermal equi- 
librium and the temperature has a constant value 
throughout the period. Consider a perturbation of 
this equilibrium, with the pulsation LO, in such a way 
that the wavelength is large compared to the charac- 
teristic length I of the period. The temperature per- 
turbation is given by 

T (.? ) e ‘I”’ 

where T is a function of the space coordinates 

The determination of the macroscopic laws by the 
homogenization method is based on the use of an 
asymptotic expansion of T in powers of the small 
parameter E and including a double scale with charac- 
teristic lengths /and L. Due to the separation ofscales. 
the temperature T can be written as a function of two 
space variables 

T(S.7). 

The variable .? is the macroscopic space variable and 
j = (-c/s) is the microscopic one, describing the small 
heterogeneities. 

The temperature T is looked for in the form 

T(S,?‘) = T’(.?,~:)+ET’(.?,J;)+E’T’(.?,I;)+ ... 

where the T’ are periodic with respect to J;. with a 
period R* = Q/a. For the sake of simplicity, R* will 
be denoted !S in that which follows. 

The method consists of incorporating such an 
expansion into the set of equations which describes 
the phenomenon at the local scale and in identifying 
the powers of E, while keeping in mind that .U and j 
should be considered as independent variables. The 
homogenization process gives a set of equations sat- 
isfied by To, which in fact represents the macroscopic 
behaviour within an approximation O(E). 

Let i., and h2 be the conductivities of the two media, 
with /I, << 2 j. The case of interest corresponds to 

FIG. 1. Macroscopic and microscopic view of the composite. 
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(4) 

The equations which govern the problem at the local 
scale are 

- + 
V(i,Vr,) = p,c,ioT, in R, (5) 

f(Lz?T,) = p2c2iwT2 in R? (6) 

WI,=0 (7) 

[nvq,*i = 0 (8) 

in which G denotes a unit vector, normal to F. We aim 
at discovering the equivalent macroscopic description. 
The non-dimensionalizing of equations (5)-(8) intro- 
duces the following dimensionless numbers 

il = ?&VT,) I I ~,c,wT, 

Vj.(A2t,.k) = pzcziw(k - 1) in a2 

k = 0 on F. (14) 

Putting 

(k) = (k), +i(kjz 

it is shown in ref. [ 1 l] that 

0 6 (k), ,< n, 0 G (k)z G n. (15) 

Equation (13) represents the description obtained by 
the homogenization technique. Notice the role of the 
coefficient (k). We aim at comparing this result with 
the phenomenological one. We will therefore need 
more insight into this description. A way to determine 
the coefficient (k) follows. Considering equation (14), 
we first look for the eigenvalues gk and the associated 
eigenfunctions (&. of the Laplacian operator with the 
above boundary conditions 

V~(~ZV,.$,) = -pa&, (no summation on k) 

cjk =0 0nF 

i2,. = +. 

We will assume that 

aI, R periodic. 

It leads to a discrete spectrum 

o</.l, &/l*<“‘</&<.” 

z = O(l) 
I) 

and the eigenfunctions are orthogonal 

T, = O(T,) 

ilL = O(1). 

Taking (4) into account, yields 
We assume the eigenfunctions to be normalized 

r 

We now make dimensionless the set of equations (5)- 
(8). For the sake of simplicity, we use the same 

Now, looking fork in the form 

notations for nondimensional quantities. Therefore, 
the dimensionless equations for the local description k = f  a,& 

p= I 
are as follows 

we obtain 
‘?(l,?T,) = p,c,ioT, (9) 1 

?(E’A~?T~) = pzc2iwT2 

in the media Q, and R,, respectively, and 

(10) 

Thus, the coefficient (k) is expressed by 
T, = T2 on F (11) 

A,?T,*ii, = ~~,l~qT~.ri, on F. (12) 

Let us perform the homogenization process (see For a transient excitation, the description is obtained 
ref. [l 11). The equivalent macroscopic behaviour is by taking the inverse Fourier transform of equation 
expressed by (13) 

V.AJ?~T”) = (P,c,(~ -n)+~zc,n- 

. I- 
V.&,,8,T”) = (p,c~(l-n)+p~c~n)~ 

(k) =+, J n2kdQ (13) 
-P2C2 

where k is the solution of the following boundary 
s 

d’TO 

-m 
R(f-i)Fdr (16) 

value problem where R(t) is the inverse Fourier transform of (k)/im 
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Note that in the general case, R(t) is a sum of expon- 
ential terms. It represents a memory function which 
gives the behaviour at time t depending on the history 
of the second time derivative of the temperature. An 
equivalent formulation is obtained by integrating by 
parts the integral in equation (16) and noticing that 
all the time derivatives of R(f) are vanishing when f  
goes to infinity 

V,(I,,,V,,TO) = (p,c,(l-n)+p?C*n)g 

-d a2To an T” 
2 at? 

--...-d,--... 
afn 

(18) 

The memory of the past is replaced by the knowledge 
of all the time derivatives at the present time. 

4. COMPARISON BETWEEN THE TWO 
DESCRIPTIONS 

The comparison between the phenomenological 
and the homogenization results is conducted by fol- 
lowing two different ways. Firstly, we consider har- 
monic excitations and we show that, under certain 
conditions, both are equivalent for a given pulsation. 
Secondly, we investigate transient heat transfers. The 
phenomenological approach then appears as a more 
or less rough approximation of the quasi-static behav- 
iour. Finally, a bilaminated composite is studied as 
an example. Although the significances of the tem- 
peratures which are introduced by the two approaches 
to describe constituent 2 do not coincide, the com- 
parison appears to be possible because ;i, and T,, 
which were introduced by the phenomenological 
approach, can be identified with 1,, and To, respec- 
tively. 

4. I Harmonic excifafions 
Following the above remark, equations (3) and (I 3) 

will coincide when their right-hand members are equal 

-aw2n2(pzc2)‘+icl’w((l -n)p,c, 

+np,cz)+iw3n’(l --)p,c,(pzcz)’ 

= ((1 -n)p,c, +np2c2-p2c2(k))im. 

This enables us to introduce a (k), which is denoted 
(k),, for the phenomenological approach. Let us put 

(k),h = (k),,h +i<k)2,h. 

Identifying the real and imaginary parts gives the two FIG. 2. Memory function: (k),,,/n and (k),,,/n with respect 
following equations to the dimensionless pulsation. 

(19) (k&h = 
o’n’(p,C*)* 

a*+w*n*(p*c*)* 

(khph = - 
CiWl*p*C* 

ct+w’r~‘(p,c~)~’ (20) 

Let us introduce the dimensionless pulsation y  

w2c2 y=- __ w. 
u 

Then, equations (I 9) and (20) become 

So, (k),,,/n and (k),,,/n can be written as a func- 
tion depending on the dimensionless pulsation y  only. 
They are shown in Fig. 2. Note that when y  goes to 
zero 

and 

<k&h ~ = O(y). 
n 

The general curve behaviours (Fig. 2) and the above 
results are quite similar to those obtained in ref. [l l] 
where it is shown that (k), and (k)2 are, respectively, 
even and odd, and that when w + 0 

(k), = O(d), % = O(l). 

The behaviours of (k),,, and (k&,, for a large 
pulsation are also the same 

(k),,, --t 1 (k)*ph ~ o 

n n 

when 

w-+00. 

Let us now compare more precisely the two 
approaches. To ensure that the two descriptions are 
equivalent, equations (19) and (20) must be sim- 
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ultaneously satisfied, i.e. they must lead to the same 
value of a. 

By equating (k),,,, to (k), from equation (20) we 
obtain two possible expressions c(, and t12 for SI One possible way to proceed is to approximate 

CI, =F[-&+&J-4)] 

equation (17) by the first exponential p = 1, i.e. to 
limit ourselves to quasi-static excitations. Equating 
now the exponents, gives 

x1=~[-&-\i((&&4)] 

which is possible only if 

a = -np,. 

But in general, the coefficients standing by the 
exponentials cannot be identified 

From equation (l9), x3 is obtained 

c(j = -IIp*c2wJ((k;, -I). 

The two descriptions are equivalent if 

a3 =a1 

or if 

al = a?. 

Therefore, the phenomenological approach gives a 
bad approximation for quasi-static excitations. 

4.3. Bilaminated composite 
Let us consider the particular composite consisting 

of two homogeneous media, I and 2, occupying layers 
of respective thickness (I -n)h/& and nh/E, measured 
with the space variable Jy (Fig. 3). For numerical 
purpose, we consider an academic example where 
medium 1 and medium 2 are composed of iron and 
cement, respectively. Their characteristics are as 
follows 

This corresponds to a pulsation such that 
A, = 80.2 W m-’ K-’ 

p, = 7870 kg m-’ 

c, =447Jkg-‘K-’ 

1, = 0.72 W m- ’ K- ’ 

Therefore, from the general behaviours of (k), and 
(k)?, as shown in Fig. 2, the above equalities will be 
verified, when it is possible, for a small value of the 
pulsation. This will be illustrated by the example of 
Section 4.3. 

p?= 1860kgmm3 

c2 = 780 J kg- ’ K- ’ 

h=lm. 

As can be seen from the general behaviours of the When applied to this composite, ref. [I I], the homo- 

curves a,(w), a?(w) and aj(o), this is only possible if genization technique leads to 

a3(0) 2 a2(0) 

or if 

(k) =n(l-q) 

and the corresponding memory function is written in 

4.2. Transient heat trunsfer the form 

From equations (19) and (20), the phenom- 
enological approach introduces a (k), which will be 

OTJ exp [-(2p+l)‘n*r/4] 
b(t) = 8n 1 

denoted (k)ph, given by 
p=o (2p+ I)‘?? 

4&t 
TC----- 

pzc2n2h2. 

Taking the inverse Fourier transform, we obtain 
One way to compare the two approaches is to ident- 

i fy the memory functions. The phenomenological 
coefficient x is no longer a constant and becomes 
a function of the time t, in contradiction with the 

We compare this result to the one in equation (17), phenomenological theory. Figure 4 shows the dimen- 
obtained from the homogenization process sionless heat transfer coefficient a with respect to the 
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-(l-n)hlc 

0 

n h Ic 

1 

A2 
Y2 

Yl 
FIG. 3. Bilaminated composite. 

dimensionless time T. As T is approaching infinity, L? 
tends to a constant. This fact will permit the derivation 
of the approximation presented in Section 5. 

Firstly, we consider harmonic excitations. The heat 
transfer coefficients c(,, a? and LX) are plotted in Fig. 
5 against the pulsation w for n = 0.5. The two 
approaches are equivalent for w z 9 x 10m6. On the 
contrary, for n = 0.8, there is no possible equivalence, 
as can be seen in Fig. 6. 

Secondly, let us consider quasi-static transient heat 
transfers. We obtain 

z 01 

-60. 

0.5 1 1.5 2 2.5 37 

FIG. 4. Identification of the memory functions of the 
phenomenological and the homogenization approaches : the 
dimensionless heat transfer coefficient 0 against the dimen- 

sionless time T. 

FIG. 5. Determination of the frequency for which the 
phenomenological and the homogenization approaches are 

equivalent. Bilaminated composite, n = 0.5. 

1 

and we verify that the coefficients standing by the 
exponentials are not equal 

8n 
r’ # n. 

Although the discrepancy is small for the considered 
composite, it is easy to check that it can become large 
for different geometries. 

5. AN APPROXIMATION FOR QUASI-STATIC 

EXCITATIONS 

The phenomenological approach was shown in Sec- 
tion 4.2 to give a bad approximation of the modelling 
of quasi-static excitations. Improving the modelling 
implies the introduction of a second parameter to 
fit the homogenization result at the first order. The 
solution obtained by the homogenization technique, 
in its form (I8), suggests to introduce a new term 
related to the time derivative of t, into the relation 
giving the heat transfer between the two constituents 

Y’2 = -Y, = -++&+). 

Identifying this new model with the one obtained by 

I 0.000002 0.000004 0.000006 
0 

-6.. 

FIG. 6. As Fig. 5, n = 0.8. 
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homogenization results in new expressions (k) ,“,, and 
(k)2U,, for (k),ph and (k),,,, depending on a and /I 

(k>,,i, = 
w’n-‘(p*c*)*+aljW*n*p*C* 

~~+w~n~(p~c*)~ 

= ,wuP*C2 +n) 
I +)I* 

awn*p,c* +cr*pon 
(khup = - az+w2n2(p2c2)2 

Y(@lP*c2 +n) 
I+y’ 

Returning to the time space, we obtain 

It is now possible to completely identify this result 
with the first exponential term of the expansion of 
R(f). It gives 

Therefore, by taking a heat transfer term in the form 

tp* = -qJ, = -a 

( 
r,+B$f* 

> 

we obtain a correct estimation for quasi-static exci- 
tations. Note that the two coefficients a and p are 
directly related to the first eigenvalue and the first 
eigenfunction of the Laplacian operator. 

The memory functions f&,, I? and &, for the 
bilaminated composite presented in Section 4.3 are 
shown in Fig. 7 for n = 0.8. The value of the heat 
transfer coefficient CI was determined from its asymp- 
totic value, see Fig. 4. 

By introducing higher derivatives of I, in the heat 
transfer term, we would have obtained a still better 
approximation. In the limiting case, where all deriva- 
tives are taken into consideration, the phenom- 
enological approach leads to a similar result to the 
one given by the homogenization process. 

With a view to comparing the three modellings, 

I 

0.2 0.4 0.6 0.8 .I 1 

FIG. 7. The three memory functions for the bilaminated 
composite, n = 0.8. 

we consider a semi-infinite boundary value problem, 
s > 0, for the bilaminated composite described in Sec- 
tion 4.3. A temperature r, cos (or), 7, constant, is 
applied along the boundary .Y = 0. The partial volume 
n of constituent 2 is 0.9. The temperature is plotted 
against the dimensionless space variable X, at 
wt = 7r/2, in Figs. 8-l I 
pulsations (5 

for different dimensionless 

and h 

FIG. 8. Temperature profile in a semi-infinite bilaminated 
composite (n = 0.9) subjected to a cosinusoidal temperature 
variation at the origin, for the dimensionless pulsation 
(5 = 0.02. /I : homogenization ; p: phenomenological 

approach ; a : approximation. 

T/To 0.25~ a and h 

T/To 

I  

1 2 3 4 5 

FIG. 9. As Fig. 8,9 = I. 

FIG. 10. As Fig. 8. 4 = 4. 

FIG. I 1. As Fig. 8, (I, = 400. 
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In Fig. 8, where t3 is very small (ti = 0.02) the dis- 
crepancy between the three modellings is negligible : 
the heat flux is almost permanent and the conductivity 
of medium 2 is ignored. As (5 is increased and reaches 
the value for the maximum of(k)?. c,T, = I, Fig. 9, the 
homogenization approach and the presented approxi- 
mation lead to an identical behaviour, which is differ- 
ent from the phenomenological one. If  (r, is further 
increased, Fig. IO with cG = 4, thediscrepancy between 
all the three modellings is noticed. Nevertheless the 
approximation modelling still gives a better fit. 
Finally, as (5 is increasing to infinity (see Fig. I I with 
05 = 400) the phenomenological curve tends to the 
homogenization one, whereas the approximation 
modelling curve remains apart. Notice, however, that 
high values of W correspond to nonhomogenizable 
situations without separation of scales and equivalent 
macroscopic continuous description. 

6. CONCLUSION 

We have investigated the heat transfer process in 
double-conductivity media by phenomenological and 
homogenization approaches. The first one, which 
introduces two temperature fields, leads to a descrip- 
tion governed by the temperature of the most con- 
ductive constituent. It represents two important dis- 
advantages: the conductivity of the less conductive 
constituent is neglected and is not taken into account 
in the macroscopic model, and the corresponding tem- 
perature field has no real physical interpretation. The 
second one gives the rigorous effective macroscopic 
description but the macroscopic model appears to 
be less simple. These two approaches have been 
compared. Firstly, by considering harmonic exci- 
tations we have shown that, under certain restrictions, 
both are equivalent for a given small pulsation. Sec- 
ondly, investigating transient heat transfer has dis- 
played the phenomenological description as a rough 
approximation for quasi-static excitations. These 
conclusions were confirmed by a numerical example. 
Finally, the phenomenological model was improved 
by introducing a new derivative term in the inter- 
constituent heat transfer. It results in an estimation 

for the quasi-static behaviour. The approximation 
would be further improved by introducing higher 
derivatives. 

It is clear that the above analysis can be ipplied to 
other diffusive phenomena in double-diffusivity 
media, like double-diffusion, double-porosity or 
double-resistivity media subjected to Fick. Darcy or 
Ohm Rows. respectively. The comparison between 
the homogenization and the phenomenologicdl 
approaches would make it possible to show the range 
of validity of the phenomenological modellings and 
also to improve them. 
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